4月27日,科学技术部发布“新能源汽车”等一系列重点专项2022年度项目申报指南。
2022 年度指南部署坚持问题导向、分步实施、重点突出的原则, 围绕能源动力、电驱系统、智能驾驶、车网融合、支撑技术、整车平台 6 个技术方向,按照基础研究类和共性关键技术类,拟部署 14 项指南任务,拟安排国拨经费 5.08 亿元。其中,围绕新体系动力电 池技术方向,拟部署 2 个青年科学家项目,拟安排国拨经费不超过 800 万元,每个项目不超过 400 万元。围绕自进化学习型自动驾驶系统关键技术、智能汽车预期功能安全实时防护及测试验证技术方向,拟部署 2 个青年科学家课题,每个课题不超过 300 万元。原则上基础研究项目和青年科学家项目不要求配套经费,共性关键技术项目要求配套经费与国拨经费比例不低于 2:1。
项目统一按指南二级标题(如 1.1)的研究方向申报。除特殊说明外,每个项目拟支持数为 1~2 项,实施周期不超过 3 年。申报项目的研究内容必须涵盖二级标题下指南所列的全部研究内容和考核指标。基础研究类项目下设课题数不超过 4 个,项目参与单位总数不超过 6 家,共性关键技术类项目下设课题数不超过 5 个,项目参与单位总数不超过 10 家。项目设 1 名负责人,每个课题设 1 名负责人。
青年科学家项目不再下设课题,项目参与单位总数不超过 3 家。青年科学家项目设 1 名项目负责人,青年科学家项目负责人年龄要求,男性应为 1984 年 1 月 1 日以后出生,女性应为 1982 年 1 月 1 日以后出生。原则上团队其他参与人员年龄要求同上。 项目下设青年科学家课题的,青年科学家课题负责人及参与人员年龄要求,与青年科学家项目一致。
指南中“拟支持数为 1~2 项”是指:在同一研究方向下,当出现申报项目评审结果前两位评价相近、技术路线明显不同的情况时,可同时支持这 2 个项目。2 个项目将采取分两个阶段支持 的方式。第一阶段完成后将对 2 个项目执行情况进行评估,根据评估结果确定后续支持方式。
1. 能源动力
1.1 新体系动力电池技术(基础研究,含青年科学家项目)
研究内容:研发下一代锂离子电池关键材料与关键技术,包括新型高容量储锂电极材料的设计与低成本化制备方法,电极反应的电荷补偿、耦合机制和动力学提升技术,材料、电极的结构演化与稳定化策略,不燃性电解液、耐高温耐高电压隔膜的设计与应用技术,高面容量电极设计与制备方法;开展新体系电池的前瞻性研究,包括电池反应新原理与新机制,电极新材料与电池新结构,电极反应动力学调控机制与改善策略,电池性能衰退机 制与稳定化策略。
1.2 固液混合态高比能锂离子电池技术(共性关键技术)
研究内容:研究高性能混合态电解质体系及高容量电极材料,正负极效率调控新原理和新技术;开发基于模型的极片/电池设计技术、极片/电池制造新工艺及新装备,研究内置传感器集成技术和高精度状态估计新方法;发展原位/实时表征新技术,研究失效机制和性能改进策略、热失控机理和防范机制,建立安全风险评估体系;开展配套应用和考核验证。
1.3 无钴动力电池及梯次应用技术(共性关键技术)
研究内容:无钴低成本材料设计与制备,高强度隔膜和功能电解液开发;多孔电极结构和表界面的离子传输模型构建;适应于梯次利用的全新结构动力电池及系统设计与制造;研究多场景复杂工况下动力电池动态、快速、无损检测技术以及电池电性能与安全性能的演变规律,建立电池全生命周期性能评价方法和退役电池残值评估指标体系;研究动力电池梯级利用的指标和表征参数的健康阈值和安全阈值,建立退役电池梯次应用技术规范。
1.4 乘用车用高功率密度燃料电池电堆及发动机技术(共性关键技术)
研究内容:开展高功率密度燃料电池发动机先进构型设计和匹配及系统仿真技术研究;研发适用于高功率密度燃料电池发动机的空压机、氢气循环系统等核心部件,以及先进热管理技术和低温快速启动技术;研究多维传感智能故障诊断和容错控制技术, 基于乘用车路谱的燃料电池动力系统测试评价及整车集成技术。 研究燃料电池发动机功率密度以及启动特性、稳态特性、动态响应特性等重要性能参数测试方法,并研究制定相关国家标准或指导性技术文件;研究乘用车燃料电池发动机批量化制造的装备技 术,形成批量化生产能力。
开展动态工况下电堆特性研究,采用高功率和高功率密度电堆架构与零部件的正向设计方法,研发适应高温低湿条件运行的 高性能、高动态响应膜电极技术,研发适应高电流密度的流场结 构、超薄低成本双极板技术,开发提高电堆一致性、可靠性以及装配效率的集成设计和密封设计方法,集成研发的催化剂、质子 膜、炭纸或扩散层、极板基材,研制燃料电池电堆,提出材料改进需求,形成批量化生产能力。
1.5 商用车用大功率长寿命燃料电池电堆及发动机技术(共性关键技术)
研究内容:研发适用于重载车辆的大功率燃料电池发动机的高效长寿命供氢、供气、水热管理、DC/DC 等核心部件;研究重载车辆用大功率燃料电池发动机多功率模块控制技术;研究重载车辆燃料电池动力系统匹配与集成及系统仿真技术;开展大功率燃料电池发动机低温冷启动、环境适应性(高低温、高海拔)、电 磁兼容(EMC)等测试与评价方法研究,建立重载车辆燃料电池 发动机的快速测评规范。研究涵盖初始加载方法、循环工况加载方法、性能复测方法以及气密性和绝缘电阻复测方法,以及燃料电池发动机经耐久试验后的电压衰减、功率衰减、效率衰减等评价指标,并研究制定相关国家标准或指导性技术文件;
研究长寿命电堆的膜电极、双极板及其匹配技术,研究大功率电堆的高可靠集成和控制技术,研发电堆的长寿命控制策略和电堆高效运行操作边界设计方法及加速测试验证技术;
研究重载车辆燃料电池电堆及发动机批量化制造的装备技术,形成批量化生产能力。
2. 电驱系统
2.1 先进驱动电机研发(共性关键技术)
研究内容:开发驱动电机关键材料、零部件和驱动电机,具体包括:轻稀土或少(无)重稀土永磁体,低损耗高强度定转子铁芯,宽温变高速轴承,电磁线,高槽满率低交流电阻定子绕组, 高可靠绝缘系统及其高温耐电晕、高导热、兼容油冷介质的绝缘材料;开展电机性能、质量、成本平衡的关键设计技术,提升功率密度与效率和抑制振动噪声的优化设计,开展高效冷却技术与生产制造工艺研究等,开发高性价比车用电机并实现整车应用。
2.2 先进电机控制器研发(共性关键技术)
研究内容:开展元器件关键技术及工艺和先进电机控制器关键技术的研发,具体包括:开发车规级碳化硅(SiC)功率芯片、 加压烧结封装和耐高温封装材料、高容积比耐高温电容器设计与封装技术以及电容膜;突破基于碳化硅—金属氧化物半导体场效 应管(SiC MOSFET)的电机控制器多物理场集成、驱动电机系 统高性能转矩控制、电磁兼容、振动噪声抑制控制和功能安全等 技术,开发基于高密度高能效 SiC 电机控制器,实现整车应用。
3. 智能驾驶
3.1 自进化学习型自动驾驶系统关键技术(共性关键技术, 含青年科学家课题)
研究内容:研究人车路广义系统的多尺度场景理解技术,开发交通参与者的长时域行为预测系统;研究自动驾驶感知—决策 —控制功能在线进化学习技术,研发模型与数据联合驱动的高效迭代求解算法,开发通用的建模、优化与分析软件;研究自动驾驶系统的高实时车载计算装置,包括低功耗异构计算架构、分布式高效任务管理、策略模型压缩/编译/部署等关键技术;研制多维驾驶性能训练平台,包括基于边缘场景的自然驾驶数据库、以安全性为核心的驾驶性能评估模型和支持虚拟交通场景的半实物在环训练等;开发自动驾驶系统学习功能集成与测试验证技术, 包括测试流程、功能优化、故障诊断、远程监控、人机交互等辅助模块。
3.2 智能汽车预期功能安全实时防护及测试验证技术(共性关键技术,含青年科学家课题)
研究内容:研究智能汽车预期功能安全认知技术,包括与场景理解紧密相关的感知认知和决策规划等系统的性能局限分析技术、结合系统正向开发流程的危害分析及风险评估技术,构建面向智能汽车的预期功能安全量化评估模型;研究人机交互的预期功能安全关键技术,包括车内外人机交互的预期功能安全防护技术及其功能模拟技术;研究预期功能安全实时防护技术,构建基于车路云协同的预期功能安全实时监测与防护系统;研究降低预 期功能安全风险的机器学习成长系统关键技术,包括面向自动驾驶机器学习成长平台的数据系统以及面向大数据的预期功能安全高性能云计算技术;研究预期功能安全场景库建设及测试评价技术,包括场景库测评优先子集和覆盖梯度研究、搭建预期功能安全仿真测试模型,研究预期功能安全量化与测试评价技术,建立预期功能安全试验验证规范及标准。
3.3 智能线控底盘平台及冗余控制技术(共性关键技术)
研究内容:研究满足自动驾驶、功能安全和信息安全的线控底盘平台系统的电子电气架构、高带宽实时通讯协议与技术;研究线控底盘的智能协同控制技术,包括不同典型场景(常规、越 野、极限)多余度底盘的非线性动态响应特性、多自由度动力学建模与解算方法、底盘集中信息处理方法、底盘全局状态识别方法、多执行系统协同与多目标优化的底盘智能控制算法;研究底盘失效运行技术,包括底盘系统失效模式、主冗切换及降级处理机制,底盘系统中的制动系统、转向系统的冗余设计,电控单元软硬件冗余设计,线控多执行系统协同容错控制技术;研究满足自动驾驶车辆需求的多余度线控执行系统集成优化技术,包括线控制动(如电机伺服助力、电磁阀)、线控转向(如六相电机、集 成电控动力单元)的关键部件技术;研制以底盘域控制器为核心的模块化、轻量化、集成化多余度线控底盘平台,形成智能线控底盘平台设计、建模、仿真和测评工具链,建立线控底盘平台多场景复杂工况、车云端结合的测试方法和评价体系。
4. 车网融合
4.1 智能汽车云控平台关键技术(共性关键技术)
研究内容:研究车路云一体化云控平台架构,包括分析智能交通系统对边缘、区域、中心三级平台的需求,明确平台体系的迭代演进路线,构建平台逻辑架构和物理架构;研究云控基础硬件系统关键技术,包括边缘云智能运算硬件,车路云一体化通信及控制单元,非理想条件下的车路云信息交互及计算可靠支持技术;研究云控基础软件关键技术,包括车路云协同决策的多任务并行技术,车群控制协同及交通动态协同云控仿真技术,云端融合感知技术;研究面向高级别自动驾驶的车路云协同决策与控制技术,包括多层级群智决策机制,受限信息环境下车路云协同决策和规划方法,基于混合计算模式的边缘云协同技术;研究云控与非云控车辆混合交通云端优化技术,包括混合交通系统建模方法,云控性能随云控车辆渗透率变化的演化规律,不同渗透率下的混合交通系统云端优化技术;研究云控平台测试技术,包括建立多维度测试评价体系,覆盖车、路、云端的测试用例,测试评价规范和标准。
5. 支撑技术
5.1 智能汽车开发验证技术及装备(共性关键技术)
研究内容:研究典型交通参与者(含车辆、行人、非机动车 等)物理反射特性,研究高精度、高动态实时驱动控制技术,研发标准软体目标物及运动控制平台;研究抗信号干扰、耐碰撞的室内外高精度融合定位测量与驾驶机器人横纵向动态控制技术, 研发室内外多场景高精度运动参数测量系统与自动驾驶测试机器 人;研究多源传感数据高带宽、低延时、高同步采集与回注技术, 研究基于海量原始数据的自动驾驶算法测评技术,研发自动驾驶高保真数据采集回注与分析评价仪器;研究支持视觉、听觉、触觉的人机交互测试技术,研究智能座舱主客观量化评价方法,研发智能座舱集成测评系统。
5.2 智能汽车场景库应用与多维测试评价技术(共性关键技术)
研究内容:研究面向智能汽车通用功能设计运行域的场景库测试用例生成应用技术,建立基于不同来源场景库的场景分布和场景显著性分析方法,构建符合统一格式的基准测试场景库,提出驾驶场景评级理论方法和场景评价限值;研究光照、降雨、大雾等典型气象和复杂动静态交通流数字—物理融合模拟试验技术,开展模拟仿真技术拟真度研究,支持智能汽车整车及系统的安全性能测试;研究智能汽车信道衰落、电磁干扰等中国道路无 线环境物理模拟技术,基于智能汽车功能激活条件与失效表征分析,开发复杂无线环境下智能驾驶可靠性测试技术;研究面向网联车辆典型智能驾驶功能的封闭场地测试评价技术,研究智能汽车开放道路测试周期与场景覆盖度关联模型,提出智能汽车开放道路测试方法,开发高效率测试数据分析及评价工具集;集成融合气象、交通流、无线环境等多维复杂环境条件和封闭场地、开放道路等组合测试手段的智能汽车多维测试评价技术体系,研究制定相关技术规范和标准。
6. 整车平台
6.1 电动载货车多材料底盘结构轻量化关键技术开发(共性 关键技术)
研究内容:突破电动载货车底盘与动力电池系统一体化全新构架集成设计技术;攻克电动载货车全铝车架纵、横梁断面多工况联合拓扑优化设计、车架疲劳寿命高精度预测与评价关键技术; 开发 2.0 吉帕高应力变截面钢板弹簧、低成本纤维增强复合材料板簧、热固性碳纤维复合材料传动轴、多材料电池箱设计制造关键技术;攻克电动载货车底盘系统超厚板异种材料连接接头高精度数值仿真、性能评价及耐蚀性处理核心技术;研发电动载货车混合材料底盘高精度、数字化全自动仿真预测软件及验证平台。
文章内容来自网络,如有侵权,联系删除、联系电话:023-85238885
参与评论
请回复有价值的信息,无意义的评论将很快被删除,账号将被禁止发言。
评论区