葛瑛团队新成果:自上而下质谱揭示SARS-CoV-2Omicron变异体棘突蛋白RBD的独特核心聚糖和O-糖型

大家好,本周为大家分享一篇预发表的文章,Distinct Core Glycan and O-Glycoform Utilization of SARS-CoV-2 Omicron Variant Spike Protein RBD Revealed by Top-Down Mass Spectrometry1,通讯作者是美国威斯康星大学的葛瑛教授。


SARS-Cov-2的快速变异为全球抗疫带来了极大的挑战。Delta和Omicron等新变种的传染性更强、病症更严重、显著逃避康复者或疫苗的中和抗体,并且逃避检测的风险更高。与野生型(WT)毒株相比,Omicron变体具有数量惊人的突变(>30),包括棘突蛋白受体结合域(S-RBD)中的15个位点突变。S-RBD是中和抗体和其他疗法的主要靶点,病毒的细胞感染性、保护表位免受抗体中和及与人类受体ACE2结合的能力与S蛋白的糖基化密切相关。S蛋白O-聚糖具有巨大的微观异质性和结构多样性,因此对其O-糖基化的表征仍具是极大的挑战。作者在本文中报道了一种自上而下的混合质谱方法,能够同时表征分子结构、位点特异性、各种糖类的相对丰度,以及不同共现蛋白型的整体翻译后修饰(PTM)。

与WT相比,Delta和Omicron变体固有的突变差异在其RBD中尤其明显(图1A)。为了阐明各种S-RBD的分子序列和O-聚糖,作者使用PNGase F从S-RBD中完全去除N-聚糖,以最小化N-聚糖异质性造成的干扰(图1B)。与完全糖基化的S-RBD相比,N-聚糖的去除产生了>10 kDa的分子量损失。通过超高分辨率12T FTICR-MS可实现各种S-RBD的基线同位素分离。自上而下的MS分析显示,各种O-糖型的化学计量比和相对丰度存在显著差异,其中Omicron变体显示出最大的O-糖型结构异质性(图1C)。

图1 由WT、Delta和Omicron变体产生的S-RBD的蛋白质突变图谱和高分辨率自上而下MS。(A)SARS-CoV-2基因组结构和S-RBD变体蛋白质序列变化的说明。(B)PNGase处理前(-)后(+)的S-RBD的SDS-PAGE。(C)在对WT、Delta和Omicron变体进行PNGase F处理后,完整S-RBD蛋白型的原始MS1。所有确定的O-糖型在插图中用红色圆圈注释。

为了实现深入的糖型和糖位点分析,作者利用捕获离子迁移谱(TIMS)-MS,通过timsTOF Pro仪器分离和分析各种S-RBD O-聚糖结构(图2)。为了表征Omicron变体的聚糖结构和占比,作者对单个S-RBD O-糖型进行了特异性分离。以最丰富的O-聚糖(26+,1069.4.3 m/z)为例,从Bruker数据分析软件输出由CAD获得的MS/MS片段离子,并使用MASH Explorer16在靶向蛋白质分析模式下进行分析,以进行全面的蛋白型表征。获得了自上而下的MS/MS谱以及各种O-聚糖结构的离子迁移率分离,以克服O-聚糖分析固有的质量简并性和微观异质性(图2B)。足够软的TIMS淌度池活化参数能够对分离的S-RBD蛋白型进行详细的中性缺失图谱绘制,并揭示了具有GalNAcGal(NeuAc)2结构的核心1(Galβ1-3GalNAc-Ser/Thr)O-聚糖(图2C)。这种TIMS-MS方法允许对聚糖结构进行直接表征,以揭示在三种S-RBD变体中具有核心1和核心2(GlcNAcβ1-6 (Galβ1-3) GalNAc-Ser/Thr)O-聚糖结构的多个S-RBD糖型。

图2  S-RBD O-糖型的TIMS-MS分析。(A)经PNGase F处理后的特定S-RBD糖型(z=26+, 1069.4 m/z)的TIMS-MS分离示意图。插图为前体离子分离后对应的离子迁移率热图。(B) 分离的蛋白型经CAD碎裂后,Omicron S-RBD O-聚糖的自上而下MS/MS。(C) Omicron S-RBD蛋白型中性缺失O-聚糖图谱。

随后,作者进一步描述了S-RBD WT、Delta和Omicron O-糖基化模式,以揭示变体之间的所有O-糖基化结构改变(图3)。有趣的是,与WT或Delta变体相比, Omicron中主要的O-聚糖微观异质性发生变化。特别是Omicron的核心2 O-聚糖结构丰度显著增强,多重唾液酸化GalNAc(GalNeuAc)(GlcNAcGalNeuAc)和岩藻糖基化GalNAc(GalNeuAc)(GlcNAcGalFuc)结构显著表达。表1总结了Omicron与WT或Delta变体相比所观察到的显著分子丰度差异。

图3 S-RBD变体的O-糖型表征。S-RBD蛋白型的去卷积谱显示了WT(绿色)、Delta(蓝色)和Omicron(粉色)变体的所有主要O-聚糖分配。理论同位素分布由红点表示。聚糖结构在用插图所示的图形表示。

表1 S-RBD变体O-糖型相对丰度总结

Omicron变体的核心1与核心2 S-RBD O-聚糖结构的相对丰度比约为71:29,核心1 GalNAcGal(NeuAc)2是最丰富的O-糖类(~69%相对丰度)。有趣的是,WT和Delta变体显示出对核心1型O-聚糖结构的强烈偏好,其O-糖型丰度的80%以上对应于核心1结构;含核心2 GalNAc(GalNeuAc)(GlcNAcGalFuc)结构的O-聚糖占其总O-糖型组成的13%以上。在WT和Delta S-RBD变体中也发现了这些特殊的核心2结构,但相对丰度要低得多(5-7%)。图3所示的高分辨率完整S-RBD糖型表征表明,与基于糖肽的自底向上MS方法相比,这种自上而下的MS方法具有明显的优势。

作者进一步研究了S-RBD变体之间的糖基化位点及其微观异质性。对S-RBD O-糖型的详细自上而下MS/MS分析显示,存在一种新的O-糖位点(Thr376),这是Omicron变体所特有的(图4A)。令人感兴趣的是,所有检测到的WT和Delta变体的S-RBD O-聚糖都被自信地单独分配给Thr323(图4B-C),这与之前关于WT S O-糖基化的研究一致。鉴于Delta上的突变数量比Omicron少,因此O-糖位点Thr323在Delta和WT变体之间保持保守也就不足为奇了。另一方面,Omicron变体产生了熟悉的Thr323 O-糖位点和一个新的Thr376 O-糖位点(b6012+和b525+),对应于核心1 O-糖型(图4D)。该Thr376 O-糖位点在残基373处与脯氨酸相邻,这与先前关于脯氨酸附近O-糖基化频率增加的报道一致。这种特殊的Pro373是Omicron变体特有的位点特异性突变,很可能是产生这种新O-糖位点的原因。实验还发现,与T323相比,Thr376位点的占有率较低(<30%),并且仅被可靠地分配给丰富的核心1 O-糖基。此外,尽管为变异体指定的O-糖型是HEK293细胞表达的S-RBD特有的,但已知HEK293表达模型可反映病毒体预期的糖基化位点。

图4 通过自上而下的MS/MS进行S-RBD O-糖定位。(A)对应于WT、Delta和Omicron S-RBD变体的核心1型聚糖的片段映射。蓝色N表示PNGase F处理后的脱酰胺作用。特定的Omicron残基突变用粉红色表示。(B-D)代表性的自上而下MS/MS CAD片段离子,包括完整的(B)WT(b71+和b17311+)、(C)Delta(b71+和b22312+)和(D)Omicron(b51+、b182+、b71+、b17311+)变体。WT和Delta变体在Thr323处显示完全的O-糖苷占据。发现Omicron变体同时具有Thr323(b51+和b182+)和Thr376(b71+和b17311+)。

本文首次阐明了SARS-CoV-2 Omicron和Delta变异体中发现的O-糖型结构异质性。与WT或Delta相比,Omicron变体的核心2型O-糖型的利用率显著提高。此外还鉴定了一种新的Omicron S-RBD特有的Thr376 O-糖位点。这种自上而下的MS方法是对传统结构方法的补充,并为SARS-CoV-2 S-RBD蛋白形式的表征提供了无与伦比的分辨率。

撰稿:夏淑君

编辑:李惠琳

文章引用:doi.org/10.1101/2022.02.09.479776


文章内容来自网络,如有侵权,联系删除、联系电话:023-85238885

参与评论

请回复有价值的信息,无意义的评论将很快被删除,账号将被禁止发言。

评论区