在现代社会,各种管道已经遍布我们生活环境的各个角落。作为能源和其他物质的运输通道,给我们的生活带来了极大的便利和巨大的经济效益。但同时也产生了一系列问题,管道在使用过程中总会存在老化、腐蚀、堵塞等问题,而且大量管道不是人可以直接接触的,这就给管道的检测和维护工作带来了很大的困难。为了进行管道的检测和维护,传统的挖掘方法和随机抽样的方法,存在工作量大和效率低等缺点。
管道机器人的研究与应用,有效的解决了这一问题。管道机器人综合了多种传感器、智能移动载体、作业装置和无损检测等技术,凭借其自身优势可以完成对管道的检测和维护。这极大地提高了管道检测和维护的工作效率。
国外对管道机器人的研究起步较早,20世纪四五十年代,国外就开展了对管道机器人的研究,已取得了一些成果。90年代后。国内也相继开展了对管道机器人的研究,已基本达到了实际应用的水平。管道机器人按其行走方式主要可以分为轮式、履带式、蠕动式、多足式等。按能源供给方式可以分为拖缆管道机器人和无缆管道机器人。
1国内外管道机器人研究现状
1.1 国外管道机器人研究现状
美国早期研制的防水管道检测机器人—P350 Flexitrax,采用轮子作为行走机构,具有一定的灵巧性。其采用模块化的设计思想,机器人的本体和驱动轮应用了独立设计的方法,驱动轮可以自由更换,通过更换不同的驱动轮可以实现适应不同的管径和工况的目的。但其更换一种驱动轮只能适应一种工作环境,使用效率不高。该管道机器人主要用于水下管道的检测,通过前端携带的高清CCD摄像机和LED灯可以清晰的检测管道内的情况。
加拿大Inuktun Services公司设计了Versatrax系列管道机器人用于管道内部检测,其中一款履带式管道机器人。该管道机器人采用履带作为行走机构,驱动力较大,两侧的履带成一定的夹角布置,通过调节夹角的角度可以改变管道机器人周身尺寸的大小,以适应不同的管径。缺点是不能实时的根据管径的变化调整行走机构夹角的大小,同时,履带式的管道机器人一般只能适应大管径的管道。
Flexitrax 管道机器人
Versatrax管道机器人
韩国的研究者设计了一种多体合作式的管道机器人collaboration-type。这种管道机器人采用周向均匀分布的三组履带作为行走机构,电机布置在一组履带中间直接通过齿轮驱动履带。每组履带通过可变形连杆机构与本体相连,在弹性元件的作用下保证了履带与管壁之间的压力。该管道机器人的另一个设计优点是采用多体组合的方式通过弹簧连接,可以提高管道机器人的拖动力。
collaboration-type系列管道机器人
2000年,德国成功研制了一种六关节管道机器人—MAKRO。该管道机器人的头部和尾部是两个完全相同的单元体,中间由四个相同的单元体连接而成,每个单体之间由3个电机独立驱动,共具有21个自由度,可以轻易实现管道机器人的前进、后退、越障和转弯运动,适应较小的管道。该管道机器人依靠其多自由度的结构,以蠕动的方式运动,其运动速度较慢。
MAKRO管道机器人
西班牙学者基于Gough-Stewart并联机构研制了一种攀爬式管道机器人机器人。该机器人主要由上下两个环形平台和6个连杆组成,以类似于6-UPS并联机器人的连接结构,增加了机器人的自由度,使其具有高强度、重量轻的优点,可以提高其运动效率。其通过环形平台上均匀布置的气动元件压紧管壁,实现在管道内的爬行运动。
德国慕尼黑大学开发了一种多足爬行管道机器人—MORITZ。该机人是整体呈一个4自由度的杆状结构,对称的分布着8个爬行足。该机器人长为0.75m,宽为0.6m,高为0.6m,重为20kg。该机器人可以在复杂的管道内平稳行走,具有一定的越障能力,但对于弯道的通过性较差 且存在移动速度缓慢,驱动效率低,控制复杂等不足。
MORITZ管道机器人
PIG-type 管道机器人
美国 Weatherford 公司开发了一种用于检测管道几何缺陷的管道机器人PIG -type。该管道机器人的驱动力来自于管道内介质的压差,机器人上聚氨酯密封碗结构就是为了增大流体的压力作用,36个弹性臂的周向均匀布置保证了管道机器人轴线与管道轴线重合,也提高了机器人的速度稳定性。机器人安装了两组里程轮,每个里程轮单独记录数据,在较大程度上提高了缺陷的定位精度,缺陷的定位误差小于2%。这种依靠介质的压力驱动的方式有效地提高了能源的利用率,但同时使得机器人运动速度不易控制。
日本设计了一种靠电池作为其动力的管道机器人—KANTARO所示。该管道机器人结合了其他管道机器人的一些优点,四个驱动轮独立驱动增加了其运动的灵活性。机械结构与控制系统分开设计,实现了模块化的思想。通过其自身携带的摄像传感系统,可以捕捉周围的工况,实现自主化的导航运动,不仅能适应不同的管径,对于各种L型和十字型的管道也有良好的通过性,且不需要拖缆,减小了负载损失。
1.2 国内管道机器人研究现状
沈阳自动化研究所和日本立命馆大学联合研制了一种具有轴向和轴向探查功能的螺旋式管道机器人,提高了管道缺陷检测的准确率和探测效率,解决了螺旋式管道机器人携带电缆易发生缠绕的问题。该管道机器人采用了可变约束驱动机构,利用单台电机可以控制机器人的所有动作。同时其驱动机构采用了弹性元件,使其驱动轮可以在周向方向上压缩,具有一定的适应管径变化的能力。
三轮腿式管道机器人
国内,哈尔滨工业大学邓宗全教授设计了一种三轮腿式的管道机器人。该管道机器人通过电机带动滚珠丝杠,主动调节轮腿的开合,以达到在行走过程中适应管径变化的目的。这种调节方式可以使轮腿有较大范围的开合,适应管径的范围增大,但其主动调节存在一定的误动作。驱动系统方面,三轴差速器的设计可以自动分配驱动轮末端的转速,而不改变输出力矩的大小,使管道机器人可以适应管道在弯道处曲率的变化,减小功率损失,提高了管道机器人的机械自适应能力。
蠕动式机器人
管道蠕动机器人
国内,上海交通大学利用SMA材料开发了一款管道蠕动机器人,该机器人整体呈正方形,边长为35mm,由12根蠕动元件组成,重量约19.5g。通过控制机器人的12根蠕动元件可以使机器人具有12个自由度,轻易的完成上、下、左、右全方位的运动,适合于L型和T型管道较多的场合。但依靠蠕动元件作为驱动机构,行走速度受到了很大的限制,该机器人的速度仅为15mm/min,且控制较复杂。
北京石油化工大学结合仿生学设计了一种类似于蝎子的管道机器人。该管道机器人模仿蝎子身体的结构和运动方式,可以轻松越过一定的障碍,而且具有蝎子独有的反射结构简单的特点,使得机器人的控制相对简单。这种多足的管道机器人增加了机器人的自由度,可以选择最佳的姿态在管道中行走,在不规则变化的管道内有良好的应用。这种管道机器人主要通过行走足的协调配合实现越障的,随着行走足的增加,协调控制的难度也会增加。此外,行走速度较慢,驱动效率不高。
国内广东工业大学研制了一种能源自给式机器人,机器人既可以靠流体的推动力进行运动,也可以把流体的能量转化为电能储存起来。管道机器人的牵引部分像一把雨伞一样,流体介质作用在伞面上,提供推力。通过调节伞面在管道截面上投影面积的大小,可以调节管道机器人的速度。当机器人靠固定机构固定在管道内的某一位置时,流体会推动发电机工作,将流体的能量转化为电能储存起来。
2 管道机器人关键技术
管道机器人的研究主要表现在通过性和能源供给两个方面。管道机器人的通过性主要是指管道机器人能够以最优的姿态通过管道的能力,通过性直接影响着管道机器人的定位精度、检测质量、能源利用率等方面,管道机器人的通过性主要包括行走机构、过弯能力、适应管径能力和越障能力。能源供给是指为了满足机器人运动的要求采取的各种形式的能源开发和利用,其代表着管道机器人工作能力的大小。
2.1 行走方式
目前,管道机器人的行走方式主要有轮式、履带式、蠕动式、多足式,每一种方式都有各自的优缺点。
轮式管道机器人依靠驱动轮行走,具有运动灵活、速度快的特性。轮式管道机器人其轮子的设计大小在一定程度上决定了机器人的周向尺寸,所以其对大小管径都有一定的适应性。但轮式管道机器人其轴向尺寸与支撑面积的比值较大,会存在倾覆的缺点。履带式的管道机器人由其结构的原因一般适用于大管径的管道或矩形管道,其驱动力较大,在转弯过程中功率损失较大。蠕动式的管道机器人简化了行走机构,适用于小管径的管道,尤其是在医学等特殊环境中的应用较广。多足式管道机器人由步态算法决定了其运动的灵活性,其具有良好的越障和转弯能力,但其机构和控制较复杂。
结合各种行走方式的优缺点,轮腿式管道机器人得到了广泛的关注和研究,其具有轮式和多足式管道机器人的优点,运动灵活且控制简单。但其行走机构还需要优化设计。
2.2 过弯能力
管道机器人其工作环境为一封闭空间,其在管内转向运动时,受到管道空间约束,不同类型接头管道对其也产生了一定的影响。管道机器人在管道内转弯时主要存在以下问题:1、如何正确识别弯道的类型,并向正确的方向转动;2、转弯时,管道机器人本体与管到空间的不相容性;3、弯道曲率对管道机器人运动性能的影响。
文章内容来自网络,如有侵权,联系删除、联系电话:023-85238885
参与评论
请回复有价值的信息,无意义的评论将很快被删除,账号将被禁止发言。
评论区