透过现象看本质,我们发现16个细分行业、5组行业画像的背后,存在一些共性的场景,这些场景具有跨行业通用性和高价值特点。基于GB/T40647-2021《智能制造系统架构》,我们从生命周期、系统层级和智能特征三个维度识别了二十个高价值的共性场景。这些场景将成为未来5-10年内工业企业的数字化部署重点,也将驱动相关关键使能技术的迭代更新,因此值得工业企业以及数字化解决方案提供商重点关注。
产品数字化设计
企业在研发设计阶段存在以下痛点:成本方面,传统设计开发方式完全依靠实物验证,验证成本高;效率方面,大量设计知识无法积累,设计过程中重复“造轮子”现象严重;质量方面,设计方案缺乏可制造性,存在不合理、不正确,造成风险。
产品数字化设计是企业节约研发成本、提高设计效率、提升产品质量的一项重要举措。例如某电机制造企业部署PLM软件,一体化管理设计和工艺BOM;建立资源库和工艺库实现知识积累和快速重用;通过设计软件与管理系统的集成,搭建一体化研发设计平台;搭建仿真分析平台,实现设计快速验证,产品研制周期缩短25%,数据100%线上管理。
产品数字化设计的实现方式如下:工业软件方面,一是应用三维设计软件,采用TOP-DOWN方法实现产品设计,采用模块化、参数化方法提高设计质量和效率,融合人工智能算法实现创成式设计,全面提升设计效率;二是将设计软件和PDM、PLM等管理系统集成,打造数字化设计协同平台,实现设计数据的统一管理和高效复用;工业数据方面,建设通用件优选管理平台、组件模型库等设计知识库,实现通用化、标准化组件的快速调用及组合设计,避免重复“造轮子”。
典型行业:汽车、航空航天、轨道交通、3C与家电、船舶、机械与设备。
工艺仿真与虚拟调试
企业在工艺设计阶段存在以下痛点:成本方面,传统工艺设计依赖人员经验,无法在设计阶段进行工艺方案验证,往往在实物制造过程中发现工艺设计问题,造成返工返修成本;效率方面,传统工艺设计重复“造轮子”现象明显,导致工艺设计效率提升困难。
通过在数字化环境中对工艺进行虚拟仿真验证,对产线进行虚拟调试,可以在设计阶段对工艺准确性进行全面验证,降低生产、调试成本。例如某装备制造公司,利用数字孪生系统进行各产线设备通用模型建模及仿真验证,实现了工厂布局的方案验证与设计优化,规划质量提升50%,规划设计周期缩短75%。
工艺仿真与虚拟调试的实现方式如下:工业软件方面,基于CAM、装配仿真、车间仿真等工艺仿真软件验证工艺可行性和正确性;基于SIMIT等虚拟调试系统,构建生产线数字孪生系统,实现工艺层级的虚拟调试,缩短产线调试周期同时降低成本;工业数据方面,构建工艺仿真与调试模板库,根据仿真对象自动匹配调用仿真配置文件,提高仿真效率。
典型行业:汽车、航空航天、轨道交通、石油化工。
设计与工艺一体化协同
设计与工艺一体化协同是缩短产品研发周期、提升产品研制效率的有效保障。例如徐工集团道路机械分公司建设了PDM系统、仿真分析平台、焊接仿真系统等项目,实现设计与工艺的一体化协同,产品研发成本降低30%,产品研发周期减少5个月,产品设计效率提升40%;鱼跃医疗运用基于模型的机械加工、装配等工艺设计,产品研发周期缩短30%。
工业软件和数据集成协同是实现设计与工艺一体化协同的主要解决方案:一是设计软件,基于三维设计软件开展研发和工艺设计,确保设计数据的一致性;二是协同平台,通过设计软件-工艺软件-信息系统的集成(如CAD-CAPP-PLM),实现数据的准确交互、及时共享;三是可制造性设计分析软件,将工艺、制造过程中的工业知识模型化、标准化,在设计环节采用DFM分析软件进行可制造性设计分析,提前发现、修正设计隐患。
典型行业:汽车、轨道交通、航空航天、3C与家电。
关键工艺智能调优
工艺过程控制当前痛点总结如下:效率方面,根据经验人工调参难以实现实时调优与控制;质量方面,大量工业企业的关键工艺高度依赖于操作人员经验判断和人工操作,容易出现质量波动问题。
工程机械、钢铁石化、建材等行业龙头企业积极开展应用探索,例如,徐工集团通过工程机械焊接工艺调优,将焊接直通率提升14%,实现了效率与品质的跃迁;海螺水泥通过熟料研磨工艺调优,将水泥质量稳定性提升15-20%;中石化通过催化裂化工艺调优,实现出油率提升5-10%。
关键工艺智能调优的实现方式如下:工业数据方面,应用数理模型破解过程黑箱实现动态优化工艺参数,应用AI算法模型实现工艺参数运算、推理与补偿优化,沉淀工艺知识库提供工艺参考与指导;工业装备方面,具有温度、压力、机器视觉等感知功能的智能工控设备实现动态优化操作参数,先进过程控制采用多变量优化算法处理多层次、多目标和多约束控制问题,实现全局优化;工业网络方面,确定性IP网络满足动态调参对确定性低时延的要求。
典型行业:汽车、钢铁、采矿、石油化工。
典型工序:焊接、焊锡、注塑、电镀。
智能机器与人员协同
在部分重复性强、标准化或危险系数高的场景中存在以下痛点:成本方面,熟练工人培训周期长,人工成本高;效率方面,人工劳动强度大,难以长时间高效工作;质量方面,操作精度、生产质量受工人经验影响,产品质量一致性差。
机器具备感知、分析、决策能力,可以实现自适应作业,高效协同人员开展工作。例如中联重科应用模块化人机协同工作站进行挖掘机下车架部件装配,装配效率提升50%,上海航天应用智能喷涂机器人,实现工件自识别、参数自调用和轮廓自适应涂装,涂装效率提升30%。
智能机器与人员协同的实现方式如下:工业网络方面,基于5G/Wi-Fi6开展设备组网,进行协同调度和生产信息传输,基于工业PON构建连接距离长、抗干扰、性能和安全性高的网络系统;工业装备方面,基于智能机床、工业机器人实现切削、抓取、喷涂、检测等加工作业自动化;工业数据方面,基于自然语言处理模型理解人类指令,配合工人工作,基于机器视觉模型,采集图像信息的自动分析识别,判断位置信息,基于智能决策算法,实现加工路径规划、位姿自适应调整。
典型行业:钢铁、机械与设备、汽车、半导体、3C与家电、食品与医药。
典型工序:上下料、搬运、外观检测、喷涂、焊接、装配。
工业现场边缘物联
当前痛点总结如下:安全方面,考虑数据安全要求,关键生产数据不能出厂;效率方面,重复数采成本高,且对边缘物联设备性能冲击大。
工业企业在工业现场部署一站式的IoT平台,将有利于数据采集、分析与现场联动,实现关键生产数据不出厂。例如,陕煤集团过去的智慧矿区建设多基于现有设施改造,一设备对接多系统,带来稳定性差、设备数采耗时长,数据准确度低等问题;现在通过新建IoT边缘平台,实现井下检修效率提升30%、智能化采煤率大幅提升。
工业现场边缘物联的实现方式如下:工业数据方面,应用实时孪生可视化组合建模工具,实现小时级产线模型构建,百万级点位并发,秒级实时采集,毫秒级超低时延;工业装备方面,应用超融合硬件将全量云IoT平台业务能力下沉边缘,厂、矿、井口轻平台部署,实现高可靠性、安全性;工业软件方面,应用IoTEdge提供数据采集、低时延自治、云边协同、边缘计算等能力。
典型行业:汽车、3C与家电、食品与医药、采矿。
工业边缘智能化升级
当前痛点总结如下:成本方面,负样本数据收集难,设备缺陷类算法精度低;效率方面,算法调优时间长,门槛高,部署效率低,换线收集样本周期长。
因此,基于AI开发工具,降低算法开发难度、缩短算法移植周期就显得尤为重要。例如,华为南方工厂在试点产线部署了华为昇腾全套AI质检方案,实现了成像子系统、训练子系统、推理子系统的有机结合,实现一站式部署、算法准确率大幅提升、模型迭代时长大幅缩短。
工业边缘智能化升级的实现方式如下:工业数据方面,应用难例识别实现半自动筛选难例,同等精度(ISV模型开发)仅需65%的样本,ISV算法精度提升10%,应用样本处理分析工具实现样本采集时间缩减50%,应用增量学习实现一键算法迁移,周期缩减50%。
典型行业:汽车、半导体、航空航天、3C与家电。
工业装备集成协同控制
传统工控系统功能单一,运动控制+视觉分析分离,多套系统叠加,复杂度高、性能差。
基于此,工业企业可探索极简架构、实时虚拟化、软件定义、安全可靠的新型工控平台。例如,某汽车装备公司通过AI硬件平台和实时操作系统共同构成的一体化智能工控系统,将集成开发效率提升4倍、成本减少30%。
工业装备集成协同控制的实现方式如下:工业装备方面,应用SoC+RTOS实现通用计算与智能计算合一,应用OICT融合组态平台实现控制与智能协同的开发与部署;工业网络方面,应用TSN确定性大带宽连接,如工业光总线,具有抗干扰能力强、带宽大(10Gbps)的优势。
场景涉及典型行业有:食品与医药、3C与家电、汽车。
工业装备远程控制
钢铁、采矿、港口等行业的工业现场环境相对恶劣、复杂,效率方面,员工劳动强度大,环境恶劣,生产效率低;安全方面,现场环境恶劣,危险源多,安全问题突出。
工业装备的远程控制成为应对恶劣现场工作环境的一项有效举措。例如,天津港的高空作业人员在50米高度作业,下楼难、工作期间饮食不便;同时港机不能远程维护,现场高空排查维修存在安全隐患。为此,天津港采用现场实景回传和拉远控制改造,使得操作员实现远程操控、现场无人化,工作的安全性、舒适性大幅提升,工作效率显著提高。
工业装备远程控制的实现方式如下:工业软件方面,基于工业控制软件管理设备调度、控制,显示设备运行状态;工业网络方面,基于5G低时延、高带宽的特性能快速传输工业现场数据,基于现场总线/TSN实现现场数据实时上传和控制指令即时传递,满足控制精度要求;工业装备方面,工业机器人等智能装备执行指令,进行生产作业操作。
典型行业:石油化工、钢铁、有色金属、建筑材料、采矿。
产线柔性化配置
企业在柔性化制造方面存在以下痛点:成本方面,传统产线的构造/人员/操作固定,改造成本巨大,需增加产线投资;产线配置的标准化、自动化程度较低,耗费大量人力、物力;效率方面,部分设备不便移动,重构设备布局周期长,部分设备智能化程度较差,工装、模具、夹具、刀具等调试周期长。
根据订单需求灵活配置人、机、料、法等要素,可以快速组织生产和响应需求变化。例如华为Wi-Fi6解决方案助力某消费电子厂商实现柔性产线配置,通过Wi-Fi6CPE+Wi-Fi6AP组建的无线生产网,给设备“剪辫子”,应对因产线频繁变更导致的机台临时移动与组合,换线时间缩短50%,AGV运行效率提升30%,网络运维OPEX降低50%。
为实现产线柔性化配置:工业网络方面采用5G、Wi-Fi等无线网络,构建超宽上行、高吞吐速率的高品质无线生产网络,实现产线的快速调整和按需配置;工业装备方面引入智能化装备、自主移动机器人、柔性化工装夹具等,搭建布局柔性、单元柔性、可复制性的柔性可重构产线。
典型行业:半导体、纺织与服装、汽车、3C与家电。
文章内容来自网络,如有侵权,联系删除、联系电话:023-85238885
参与评论
请回复有价值的信息,无意义的评论将很快被删除,账号将被禁止发言。
评论区