H2O2/Fe2(MoO4)3体系中H2O2吸附分解及NO氧化行为的DFT研究

To elucidate the adsorption/ decomposition behavior of H2O2 and oxidation behavior of NO in H2O2 / Fe2(MoO4) 3 denitrificationsystem, density functional theory (DFT) calculations were performed to investigate the individual adsorption and co-adsorption characteristics of H2O2 and NO on Fe2(MoO4) 3 surface for the first time. The adsorption energies, Mulliken population, and oxidation pathwayswere systematically analyzed to reveal the mechanism of catalytical decomposition of H2 O2 and NO oxidation. The results show thatH2O2 can be easily decomposed into reactive radicals on Fe2(MoO4) 3 surface, while NO is adsorbed in molecular form. In the case of coadsorption, H2 O2 preferentially adsorbs on the catalyst surface and undergoes decomposition process. NO is subsequently oxidized toHNO2 / NO2 by the hydroxyl group/ oxygen atom generated from H2O2 decomposition. The oxidation products HNO2 / NO2 are only bonded tothe catalyst surface via hydrogen bond and can easily enter the mainstream flue gas under flow disturbance, thus reducing the depositionpossibility of nitrate on catalyst surface. This study unravels the micro mechanism of H2O2 adsorption/ decomposition and NO oxidation onFe2(MoO4) 3 surface, providing theoretical guidance for designing heterogeneous Fenton-like denitrification system with high catalytic activity and excellent stability.

文章内容来自网络,如有侵权,联系删除、联系电话:023-85238885

参与评论

请回复有价值的信息,无意义的评论将很快被删除,账号将被禁止发言。

评论区